dataquality.loggers.logger_config package#
Subpackages#
- dataquality.loggers.logger_config.seq2seq package
- Submodules
- dataquality.loggers.logger_config.seq2seq.chat module
- dataquality.loggers.logger_config.seq2seq.completion module
- dataquality.loggers.logger_config.seq2seq.seq2seq_base module
Seq2SeqLoggerConfig
Seq2SeqLoggerConfig.generation_config
Seq2SeqLoggerConfig.generation_splits
Seq2SeqLoggerConfig.id_to_formatted_prompt_length
Seq2SeqLoggerConfig.id_to_tokens
Seq2SeqLoggerConfig.max_input_tokens
Seq2SeqLoggerConfig.max_target_tokens
Seq2SeqLoggerConfig.model
Seq2SeqLoggerConfig.model_type
Seq2SeqLoggerConfig.response_template
Seq2SeqLoggerConfig.sample_length
Seq2SeqLoggerConfig.tokenizer
- Module contents
Submodules#
dataquality.loggers.logger_config.base_logger_config module#
- pydantic model BaseLoggerConfig#
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
field cur_epoch:
Optional
[int
] = None#
-
field cur_inference_name:
Optional
[str
] = None#
-
field dataloader_random_sampling:
bool
= False#
-
field exception:
str
= ''#
-
field existing_run:
bool
= False#
-
field feature_names:
List
[str
] = []#
-
field finish:
Callable
= <function BaseLoggerConfig.<lambda>>#
-
field helper_data:
Dict
[str
,Any
] = {}#
-
field idx_to_id_map:
DefaultDict
[str
,List
] = {}#
-
field inference_logged:
bool
= False#
-
field input_data_logged:
DefaultDict
[str
,int
] = {}#
-
field int_labels:
bool
= False#
-
field labels:
Any
= None#
-
field last_epoch:
int
= 0#
-
field logged_input_ids:
DefaultDict
[str
,Set
] = {}#
-
field metadata_documents:
Set
= {}#
-
field ner_labels:
List
[str
] = []#
-
field observed_labels:
Any
= None#
-
field observed_num_labels:
Any
= None#
-
field remove_embs:
bool
= False#
-
field report_emails:
List
[str
] = []#
-
field tagging_schema:
Optional
[TaggingSchema
] = None#
-
field tasks:
Any
= None#
-
field test_logged:
bool
= False#
-
field training_logged:
bool
= False#
-
field validation_logged:
bool
= False#
- reset(factory=False)#
Reset all class vars
- Return type:
None
-
field cur_epoch:
dataquality.loggers.logger_config.image_classification module#
- pydantic model ImageClassificationLoggerConfig#
Bases:
TextClassificationLoggerConfig
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
field all_ids:
Dict
[str
,set
] = {}#
-
field observed_ids:
Dict
[str
,set
] = {}#
-
field all_ids:
dataquality.loggers.logger_config.object_detection module#
- class BoxFormat(value)#
Bases:
str
,Enum
Format for bounding box representation
- xyxy = 'xyxy'#
- tlxywh = 'tlxywh'#
- cxywh = 'cxywh'#
- pydantic model ObjectDetectionLoggerConfig#
Bases:
BaseLoggerConfig
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
field box_format:
str
= BoxFormat.xyxy#
-
field image_cloud_path:
str
= ''#
-
field box_format:
dataquality.loggers.logger_config.semantic_segmentation module#
- pydantic model SemanticSegmentationLoggerConfig#
Bases:
BaseLoggerConfig
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Fields:
dataquality.loggers.logger_config.tabular_classification module#
- pydantic model TabularClassificationLoggerConfig#
Bases:
TextClassificationLoggerConfig
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
field feature_importances:
Dict
[str
,float
] = {}#
-
field feature_importances:
dataquality.loggers.logger_config.text_classification module#
- pydantic model TextClassificationLoggerConfig#
Bases:
BaseLoggerConfig
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
field labels:
Optional
[List
[str
]] = None# - Validated by:
clean_labels
-
field observed_labels:
Set
[str
] = {}#
-
field observed_num_labels:
int
= 0#
-
field labels:
dataquality.loggers.logger_config.text_multi_label module#
- pydantic model TextMultiLabelLoggerConfig#
Bases:
BaseLoggerConfig
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Fields:
-
field binary:
bool
= True#
-
field labels:
Optional
[List
[List
[str
]]] = None# - Validated by:
clean_labels
-
field observed_labels:
DefaultDict
[int
,Set
] = {}#
-
field observed_num_labels:
Optional
[List
[int
]] = None#
-
field observed_num_tasks:
int
= 0#
-
field tasks:
Optional
[List
[str
]] = None#
dataquality.loggers.logger_config.text_ner module#
- pydantic model TextNERLoggerConfig#
Bases:
BaseLoggerConfig
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
field gold_spans:
Dict
[str
,List
[Tuple
[int
,int
,str
]]] = {}#
-
field sample_length:
Dict
[str
,int
] = {}#
- get_sample_key(split, sample_id)#
- Return type:
str
- reset(factory=False)#
Don’t clear the “ner” or “ner_config” variables if they are set
- Return type:
None
-
field gold_spans: