dataquality.loggers.logger_config package#

Subpackages#

Submodules#

dataquality.loggers.logger_config.base_logger_config module#

pydantic model BaseLoggerConfig#

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Fields:
field conditions: List[Condition] = []#
field cur_epoch: Optional[int] = None#
field cur_inference_name: Optional[str] = None#
field cur_split: Optional[Split] = None#
Validated by:
  • inference_sets_inference_name

field dataloader_random_sampling: bool = False#
field exception: str = ''#
field existing_run: bool = False#
field feature_names: List[str] = []#
field finish: Callable = <function BaseLoggerConfig.<lambda>>#
field helper_data: Dict[str, Any] = {}#
field idx_to_id_map: DefaultDict[str, List] = {}#
field inference_logged: bool = False#
field input_data_logged: DefaultDict[str, int] = {}#
field int_labels: bool = False#
field labels: Any = None#
field last_epoch: int = 0#
field logged_input_ids: DefaultDict[str, Set] = {}#
field metadata_documents: Set = {}#
field ner_labels: List[str] = []#
field observed_labels: Any = None#
field observed_num_labels: Any = None#
field remove_embs: bool = False#
field report_emails: List[str] = []#
field tagging_schema: Optional[TaggingSchema] = None#
field tasks: Any = None#
field test_logged: bool = False#
field training_logged: bool = False#
field validation_logged: bool = False#
reset(factory=False)#

Reset all class vars

Return type:

None

dataquality.loggers.logger_config.image_classification module#

pydantic model ImageClassificationLoggerConfig#

Bases: TextClassificationLoggerConfig

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Fields:
field all_ids: Dict[str, set] = {}#
field observed_ids: Dict[str, set] = {}#

dataquality.loggers.logger_config.object_detection module#

class BoxFormat(value)#

Bases: str, Enum

Format for bounding box representation

xyxy = 'xyxy'#
tlxywh = 'tlxywh'#
cxywh = 'cxywh'#
pydantic model ObjectDetectionLoggerConfig#

Bases: BaseLoggerConfig

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Fields:
field box_format: str = BoxFormat.xyxy#
field image_cloud_path: str = ''#

dataquality.loggers.logger_config.semantic_segmentation module#

pydantic model SemanticSegmentationLoggerConfig#

Bases: BaseLoggerConfig

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Fields:

dataquality.loggers.logger_config.tabular_classification module#

pydantic model TabularClassificationLoggerConfig#

Bases: TextClassificationLoggerConfig

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Fields:
field feature_importances: Dict[str, float] = {}#

dataquality.loggers.logger_config.text_classification module#

pydantic model TextClassificationLoggerConfig#

Bases: BaseLoggerConfig

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Fields:
field labels: Optional[List[str]] = None#
Validated by:
  • clean_labels

field observed_labels: Set[str] = {}#
field observed_num_labels: int = 0#

dataquality.loggers.logger_config.text_multi_label module#

pydantic model TextMultiLabelLoggerConfig#

Bases: BaseLoggerConfig

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Fields:
field binary: bool = True#
field labels: Optional[List[List[str]]] = None#
Validated by:
  • clean_labels

field observed_labels: DefaultDict[int, Set] = {}#
field observed_num_labels: Optional[List[int]] = None#
field observed_num_tasks: int = 0#
field tasks: Optional[List[str]] = None#

dataquality.loggers.logger_config.text_ner module#

pydantic model TextNERLoggerConfig#

Bases: BaseLoggerConfig

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Fields:
field gold_spans: Dict[str, List[Tuple[int, int, str]]] = {}#
field sample_length: Dict[str, int] = {}#
get_sample_key(split, sample_id)#
Return type:

str

reset(factory=False)#

Don’t clear the “ner” or “ner_config” variables if they are set

Return type:

None

Module contents#